Comparison between constant-stress testing and step-stress testing under Type-I censoring Comparison between Constant-stress Testing and Step-stress Testing under Type-I Censoring
نویسندگان
چکیده
By running the life tests at higher stress levels than normal operating conditions, accelerated life testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant-stress testing, a unit is tested at a fixed stress level until failure or the termination time point of the test, while stepstress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time points during the test. In this work, the optimal k-level constant-stress and step-stress accelerated life tests are compared for the exponential failure data under complete sampling and Type-I censoring. The objective is to quantify the advantage of using the step-stress testing relative to the constantstress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria. The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the ∗Corresponding author: [email protected] – The author would like to thank the support from the College of Business research grant program.
منابع مشابه
CONSTANT STRESS ACCELERATED LIFE TESTING DESIGNWITH TYPE-II CENSORING SCHEME FOR PARETO DISTRIBUTION USING GEOMETRIC PROCESS
In many of the studies concerning Accelerated life testing (ALT), the log linear function between life and stress which is just a simple re-parameterization of the original parameter of the life distribution is used to obtain the estimates of original parameters but from the statistical point of view, it is preferable to work with the original parameters instead of developing inferences for the...
متن کاملInterval Estimation for the Exponential Distribution under Progressive Type-II Censored Step-Stress Accelerated Life-Testing Model Based on Fisher Information
This paper, determines the confidence interval using the Fisher information under progressive type-II censoring for the k-step exponential step-stress accelerated life testing. We study the performance of these confidence intervals. Finally an example is given to illustrate the proposed procedures.
متن کاملOptimal Simple Step-Stress Plan for Type-I Censored Data from Geometric Distribution
Abstract. A simple step-stress accelerated life testing plan is considered when the failure times in each level of stress are geometrically distributed under Type-I censoring. The problem of choosing the optimal plan is investigated using the asymptotic variance-optimality as well as determinant-optimality and probability-optimality criteria. To illustrate the results of the paper, an example i...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملExact hypothesis testing and confidence interval for mean of the exponential distribution under Type-I progressive hybrid censoring
Censored samples are discussed in experiments of life-testing; i.e. whenever the experimenter does not observe the failure times of all units placed on a life test. In recent years, inference based on censored sampling is considered, so that about the parameters of various distributions such as normal, exponential, gamma, Rayleigh, Weibull, log normal, inverse Gaussian, ...
متن کامل